Some Invariant Properties of the Real Hadamard Matrix*
نویسنده
چکیده
Applications of well-known matrix theory reveal some interesting and possibly useful invariant properties of the real Hadamard matrix and transform (including the Walsh matrix and transform). Subject to certain conditions that can be fulfilled for many orders of the matrix, the space it defines can be decomposed into two invariant subspaces defined by two real, singular, mutually orthogonal (although not self-orthogonal) matrices, which differ from the Hadamard matrix only on the principal diagonal. They are their own Hadamard transforms, within a scalar multiplier, so their columns (or rows) are the eigenvectors of the Hadamard matrix. This relationship enables us to determine the eigenvalues of the Hadamard matrix, and to construct its Jordan normal form. The transformation matrix for converting the one to the other is equal to the sum of the Hadamard matrix and the Jordan form matrix. Unfortunately, therefore, it appears to be more complicated structurally than the Hadamard matrix itself, and does not lead to a simple method of generating the Hadamard matrix directly from its easily constructed Jordan form. * Work supported by the Department of Energy. (Submitted for publication.) -2
منابع مشابه
Integral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کاملSome properties of analytic functions related with bounded positive real part
In this paper, we define new subclass of analytic functions related with bounded positive real part, and coefficients estimates, duality and neighborhood are considered.
متن کاملDesign of Logic Network for Generating Sequency Ordered Hadamard Matrix H
A logic network to produce the sequency ordered Hadamard matrix H based on the property of gray code and orthogonal group codes is developed. The network uses a counter to generate Rademacher function such that the output of H will be in sequency. A general purpose shift register with output logic is used to establish a sequence of period P corresponding to a given value of order m of the Hadam...
متن کاملNatural-ordered complex Hadamard transform
This paper presents a new transform known as natural-ordered complex Hadamard transform (NCHT) which is derived from the Walsh–Hadamard transform (WHT) through the direct block matrix operation. Some of its properties, including the exponential property of the NCHT and the shift invariant property of the NCHT power spectrum, are presented. The relationship of the NCHT with the sequency-ordered ...
متن کاملWeak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کامل